Primary ideal theory for quadratic Jordan algebras
نویسندگان
چکیده
منابع مشابه
Ideal Theory of BCH - Algebras
Corresponding Author: Dr. Arsham Borumand Saeid, Department of Mathematics, Shahid Bahonar University of Kerman, Kerman, Iran, email: [email protected] 1446 Ideal Theory of BCH-Algebras 1A. Borumand Saeid, 2A. Namdar and 3R.A. Borzooei Department of Mathematics, Shahid Bahonar University of Kerman, Kerman, Iran Department of Mathematics, Islamic Azad University Zarin Dasht Branch, Iran Depar...
متن کاملIDEAL J *-ALGEBRAS
A C *-algebra A is called an ideal C * -algebra (or equally a dual algebra) if it is an ideal in its bidual A**. M.C.F. Berglund proved that subalgebras and quotients of ideal C*-algebras are also ideal C*-algebras, that a commutative C *-algebra A is an ideal C *-algebra if and only if it is isomorphicto C (Q) for some discrete space ?. We investigate ideal J*-algebras and show that the a...
متن کاملApproximation of Jordan homomorphisms in Jordan Banach algebras RETRACTED PAPER
In this paper, we investigate the generalized Hyers-Ulam stability of Jordan homomorphisms in Jordan Banach algebras for the functional equation begin{align*} sum_{k=2}^n sum_{i_1=2}^ksum_{i_2=i_{1}+1}^{k+1}cdotssum_{i_n-k+1=i_{n-k}+1}^n fleft(sum_{i=1,i not=i_{1},cdots ,i_{n-k+1}}^n x_{i}-sum_{r=1}^{n-k+1} x_{i_{r}}right) + fleft(sum_{i=1}^{n}x_{i}right)-2^{n-1} f(x_{1}) =0, end{align*} where ...
متن کاملHom-alternative Algebras and Hom-jordan Algebras
The purpose of this paper is to introduce Hom-alternative algebras and Hom-Jordan algebras. We discuss some of their properties and provide construction procedures using ordinary alternative algebras or Jordan algebras. Also, we show that a polarization of Hom-associative algebra leads to Hom-Jordan algebra. INTRODUCTION Hom-algebraic structures are algebras where the identities defining the st...
متن کاملSimple Conformal Algebras Generated by Jordan Algebras
1 Background and Motivation We start with an example of affine Kac-Moody algebras and the Virasoro algebra. In this talk, F will be a field with characteristic 0, and all the vector spaces are assumed over F. Denote by Z the ring of integers and by N the set of nonnegative integers. Let 2 ≤ n ∈ N. Set sl(n,F) = {A ∈ Mn×n(F) | tr A = 0}, (1.1) 〈A,B〉 = tr AB for A,B ∈ sl(n,F), (1.2) where Mn×n(F)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1973
ISSN: 0021-8693
DOI: 10.1016/0021-8693(73)90117-8